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ABSTRACT- Inductively coupled plasma-atomic emission spectrometric determination of the 
concentrations of aluminum, barium, calcium, iron, magnesium, manganese, sodium, stron- 
tium, and titanium in 184 colorless container and sheet glasses was used to evaluate classification 
procedures for these two classes of glass. Effective two-dimensional visualization of the classifica- 
tion results is afforded by principal components analysis of the data with correct classification of 
180 of the 184 samples. Good discrimination among sources of glass within a class is provided 
using hierarchical, unsupervised clustering. Individual manufacturing plants of a common con- 
tainer glass can be distinguished in most instances. 
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Forensic science examinat ion of glass evidence typically involves the de terminat ion  of op- 
tical and  physical characterist ics including refractive index, dispersion, color, t ransparency,  
fluorescence, surface features,  and  density. Determinat ion  of these characterist ics to be in- 
dist inguishable between compared  f ragments  indicates a common origin. Assignment  of a 
significance measure to this indist inguishabil i ty requires comparison of the measured char- 
acteristics with those of many glasses of the  same class as the one in question. Classification, 
defined as the p lacement  of a sample into a product-use class, such as sheet or container  
glass, is required before any probabil i ty considerat ions to insure appropr ia te  data base com- 
parison for the  quest ioned glass f ragment .  Glasses such as headlight ,  cookware, l ightbulb,  
and  optical glass are readily classified by their  optical and physical properties.  However, the 
ranges of density and  refractive indices of sheets, containers,  and  tableware made  of soda- 
lime-silicate glass overlap, making  classification based on these parameters  impossible. 
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Compositional analysis has frequently been considered as a method to provide classification 
of questioned soda-lime:silicate glass fragments. Composition has also proven useful for dis- 
crimination or differentiation between sources of glass within a class. Methods which have 
been used for determination of element concentrations in glass include neutron activation 
analysis, X-ray fluorescence, mass spectroscopy, atomic absorption spectrophotometry, 
spark source atomic emission, and inductively coupled plasma-atomic emission spectrome- 
try (ICP-AES). Much of this research has been done over a period of years in the forensic 
science laboratories in Great Britain and is summarized in several recent articles by Hick- 
man and coworkers [1-4]. These papers provide an excellent discussion of which elements 
are most useful for classification and discrimination of glass sources. An ICP-AES proce- 
dure developed in these studies [1,5] has proven effective for glass classification using the 
concentrations of six elements and has been used routinely in the Metropolitan Police Foren- 
sic Science Laboratory (MPFSL) for several years. More recently, a classification study of 
glass in the United States using a semiquantitative method has been presented by 
Ryland [6]. 

Hickman proposed a classification procedure using the concentrations of manganese, 
iron, magnesium, aluminum, and barium (Mn, Fe, Mg, Al, and Ba) plus refractive index 
(later adding strontium [Sr]) which produced a good success rate in classifying 349 samples 
of glass [I]. The samples used to construct and test this classification procedure were col- 
lected from a variety of clear and colored containers, sheets, and tableware. Most of the 
sheet glasses used in that and other studies conducted in Great Britain were produced by a 
single manufacturer, so the anal~ical results used to develop the classification criteria do 
not reflect the wider range of glass compositions found in the United States. Hickman and 
coworkers expanded the classification procedure by consideration of 22 element concentra- 
tions and found that Mg, lithium (Li), cobalt (Co), Sr, Fe, and arsenic (As) provide good 
classification of their glass samples [l,2]. Other studies have shown that in some instances 
As, cerium (Ce), Co, chromium (Cr), cesium (Cs), Li, lead (Pb), rubidium (Rb), antimony 
(Sb), St, and others offer good discrimination of glass sources [7-9]. The selection of the best 
elements for classification or discrimination must be based on both the variation of the ele- 
ments among glass sources and the sensitivity and precision of the analytical method for 
each element. ICP-AES is a method that has recently been introduced into the forensic sci- 
ence laboratory as a means of quantitatively determining the concentrations of a wide range 
of major, minor, and trace elements in relatively small samples following their dissolution 
[5,10,11]. ICP-AES offers the advantages of long linear dynamic ranges, relatively small 
sample size requirements, multielement capability, and freedom from many of the interele- 
ment effects inherent in other spectroscopic methods, making it an attractive method for 
analysis of glass fragments. 

In this paper we report the results of an ICP-AES based study of elemental composition of 
colorless container and sheet glass samples similar to those appearing as evidence in United 
States forensic science laboratories. In our previous experience and as noted variously in the 
British publications, the wide ranges of glass compositions arising from the many sources of 
glass products in this country exceeds those reported in the British studies. This can produce 
errors in classification when applying the MPFSL class criteria and other less complete stud- 
ies reported previously. We selected nine elements for this study because they occur at levels 
that can readily be determined by ICP-AES in almost all glasses. Of course, in many cases, 
the presence of Ce or As as decolorizers or boron (B), Li, Co, Cr, Sb, Pb, or others in special- 
use or colored glasses will offer a very high degree of classification (and discrimination). The 
concentrations of these elements could readily be determined using the ICP-AES technique 
presented in this paper with the inclusion of suitable standards. In such cases, refractive 
index measurements would often be outside the 1.51 to 1.53 range of normal sheet, and 
container glasses or other physical properties would assist in classifying the sample. We con- 
sidered several pattern recognition techniques for evaluation of the analytical data for classi- 
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fication of sheet and container glasses and discrimination of sources within a class. We have 
considered only sheet and container glasses as the two classes of concern. The sheet glasses 
include both automobile and building windows and display case glass because they have 
previously been shown to be compositionally similar [2]. In our use, the term "sheet" applies 
to flat glasses manufactured by sheet, float, or plate processes. We have ignored tableware in 
our study because much tableware is either compositionally similar to container glass or one 
of such a wide range of compositions that it should not be considered as a single class. 

Materials and Methods  

Glass Samples 

The 135 container glass samples used in this study include 85 beverage bottles and 50 food 
jars. The beverage bottles were collected locally. The food containers consist of two samples 
from each glass manufacturer supplying 4 packing plants of a babyfood manufacturer. The 
container glass samples include products from about 20 glass manufacturers (several repre- 
sented by more than one manufacturing plant) originally containing 50 different products. 
Of the 135 container glasses, 20 are of foreign manufacture. The containers are not meant to 
be a representative survey, but should reflect the range of compositions expected for contain- 
ers in the United States. The 49 sheet glass samples in this study were collected by the FBI 
Laboratory from casework submissions between 1975 and 1985. The sheet glass samples 
represent both float and drawn glasses and both automobile and architectural sheets. No 
information was obtained concerning the age or manufacturer of these samples. 

Reagents 

Hydrofluoric acid was reagent grade, hydrochloric acid (HCI) was ultrapure, and a 1000- 
gg/mL scandium solution was made by dissolution of reagent grade scandium oxide (Sc~O3) 
in 5% HCI [8]. Water used for all dilutions was of 18 megohm (M~q) purity. Multielement 
standard solutions were prepared by dilution of 1000-/xg/mL atomic absorption reference 
standard solutions in 2% HCI solution to match the sample solutions. 

Digestion Procedure 

Glass samples were rinsed in deionized water, dried, and broken, and several grams of 
glass in approximately 50-rag sized fragments were removed. The fragments were cleaned by 
soaking in concentrated nitric acid for 30 rain, followed by three rinses each with deionized 
water and ethanol. After drying, the fragments were crushed between sheets of polyethylene 
to submilligram size. Several fragments from each sample with a total weight of 2 to 8 mg 
were weighed into a 15-mL polypropylene centrifuge tube. Digestion of each sample was 
begun by the addition of 500 gL of a 1 : 1 HF : HCI solution and by placing the capped tube in 
a bath-type sonicator for 1 h. Following sonication, the tubes were placed in an 80~ oven 
until taken to dryness. The solid was redissolved by the addition of 100 gL of 50% HCI and 
mixing. The tubes were returned to the oven and again taken to dryness. The resulting solid 
material was dissolved by the addition of 400 #L of 50~ HCI. An aliquot of 0.500 mL of a 
1000-/~g/mL scandium (Sc) solution was added to each tube as an internal standard and the 
solution was diluted to about 10 mL with deionized water. The final volume of the solutions 
is not important since the use of the internal standard corrects all calculated concentrations 
to an equal volume. A reagent blank sample was made with each set of samples by adding all 
reagents to an empty tube and carrying it through the heating procedure along with the 
samples. Accuracy of the analysis and completeness of the digestion were checked by includ- 
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ing a sample of National Bureau of Standards Standard Reference Material 1831 or 651 with 
each set of samples. 

ICP-AES Analysis Procedure 

Following dissolution, sample solutions were analyzed using a Plasma II Model ICP-AES 
(Perkin-Elmer). Pertinent instruntent operating conditions are given in Table 1. The wave- 
lengths [in nanometres (nm)] used for analysis are AI (396.2), Ba (455.4), Ca (393.4), Fe 
(238.2), Mg (279.6), Mn (257.6), Na (589.6), Sr (407.8), and Ti (334.9). Emission intensities 
were recorded by scanning the 3600 l ines/mm monochromator sequentially over the Fe. Mn, 
Mg, Ti, and Ca lines and simultaneously scanning the 1800 l ines/mm monochromator  over 
the Al, Sr, Ba, and Na lines. An internal scandium standard was used to normalize all emis- 
sion readings using the automatic standardization mode of the instrument for all elements 
except Na. For Na determination, manual correction for the Sc internal standard was made 
using the Sc emission line at 361.4 nm. After analysis of the first 116 samples, we decided 
that Na offered no classification assistance, so it was not determined for the remaining sam- 
pies. Calibration curves of element emission intensity ratios in 5 multielement standard solu- 
tions were used to calculate element concentrations in the samples. The concentrations of 
analytes in the standard solutions are given in Table 2. Most of the HF and silicon from the 
samples is volatilized during the digestion, resulting in an adequate match of sample and 
standard matrices at 2% HCI plus the elements of interest. The standards were rerun as 
checks of the calibration after every 20 samples and recalibration was done if needed. Tripli- 
cate successive emission readings were taken oll each sample and standard solution. The 
triplicate measurements were used to indicate instrument stability and corrective action was 
taken when relative standard deviations for several elements exceeded 5%. 

The element concentrations in the standard solutions were selected to cover the expected 
range of sample compositions. Measurements lower than the S1 standard were possible for 
all elements except iron, and extension of the upper range of linear response could be made 
for all elements with the inclusion of more concentrated standards. Good accuracy was ob- 
tained using this procedure, as indicated by the close agreement between analytical results 
and certified values for National Bureau of Standards (NBS) Standard Reference Material 
(SRM) 1831, soda-lime sheet glass shown in Table 3. A bottle 3 was divided into ten 2.5-cm 
segments and analyzed to provide a measure of the precision of the analytical method. The 
results of analysis of two samples from each segment, given in Table 4, indicate the com- 
bined digestion and analysis precision and compositional variability of the bottle to be in the 
1 to 4% relative standard deviation range for most elements. This is generally within the 
expected precision of ICP-AES for analysis of complex solutions. The results exhibiting the 
greatest variability are Fe and Ba. Most of the Fe variability occurs because the bottle se- 
lected contains levels of Fe close to the lower limit of detection of the method. Also, a small 
reagent blank correction was required for Fe and some contamination has occurred as evi- 
denced by the two data points which were rejected prior to calculating the mean Fe value. 
The 7.2~ relative standard deviation of Ba values about the mean probably reflects a real 
variation in the composition of the bottle, since the ICP-AES procedure is very sensitive for 
Ba response and the concentrations in this bottle are within the analytical range where 
results normally exhibit 1 to 4~ relative deviations. In general, the standard deviation of 
element concentration measurements in a homogeneous glass is less than 4% for all ele- 
ments when they are at concentrations greater than in the S1 standard (Tables 3 and 4). The 
analytical procedure could readily be modified for determination of other elements in glass 
with similar precision by the inclusion of appropriate standards. 

~Manufactured by Diamond Glass Company, WV. 
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TABLE 1--1nstrumental conditions for ICP-AES analysis of 
glass fragment digest solutions. 
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Condition Value 

Incident plasma power 
Plasma gas flow 
Auxiliary gas flow 
Nebulizer gas flow 
Viewing height 
Monochromator 

Signal compensation 
Background correction 
Integration time 
Sample uptake rate 

1000 W 
15 L/min  
1.0 L/min  
1.0 L/min  
15 mm above rf coil 
1800 lines/ram (wavelength > 395 nm) 
3600 l ines/ram (wavelength < 395 nm) 
yes, for all elements except Na 
off 
100 ms 
1.0 mL"min  

TABLE 2--Concentrations of analyte elements in ICP-AES 
standard solutions for glass analysis. All concentrations 

are in l~g/mL. 

Element SO S 1 $2 $3 $4 

AI 0 0.200 0.50 1.00 4.00 
Ba 0 0.005 0.01 0.02 0.05 
Ca 0 0.500 2.00 5.00 20.00 
Fe 0 0.010 0.04 0.10 0.40 
Mg 0 0.040 0.20 1.00 8.00 
Mn 0 0.005 0.01 0.02 0.05 
Na 0 0.500 2.00 5.00 20.00 
Sr 0 0.005 0.02 0.05 0.10 
Ti 0 0.020 0.05 0.10 0.20 

TABLE 3--Results of lCP-AES analysis of NBS SRM 1831 soda-lime sheet 
glass. Values given are element percent by' weight. 

Mean Concentration Standard NBS Certified 
ELement of Five Replicates Deviation Value 

Fe 0.067 0.006 0.061 
AI 0.644 0.007 0.640 
Mn 0.0015 0.0003 . . .  
Sr 0.0089 0.0002 
Mg 2.18 0.02 2.120 
Ba 0.0031 0.0001 
Ti 0.0125 0.0008 0.011 
Ca 6.00 0.06 5.860 
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TABLE 4--Resuhs of analysis of two samples of glassfragmentsJ~'om each of ten sections, 
numbered from top to bottom, of a bottle manufactured by Diamond Glass Co., WV. Results are 

element percent by weight in the glass except relative standard deviation, which is hi percent. 

Sample AI Fe Mn Sr Mg Ba Ti Ca 

C71-1a 0.802 0.025 0.0102 0.1441 0.172 0.0147 0.0361 7.76 
C71-1b 0.775 0.026 0.0105 0.1436 0.172 0.0159 0.0362 7.58 
C71-2a 0.787 0.024 0.010l 0.1439 0,170 0.0147 0.0361 7.66 
C71-2b 0.773 0.026 0.0103 0.1439 0.170 0.0145 0.0360 7.57 
C71-3a 0.800 0,026 0.0107 0.1456 0.176 0.0146 0.0354 7.74 
C71-3b 0.775 0.051" 0.0103 0.1439 0.170 0.0146 0.0363 7.74 
C71-4a 0.784 0,027 0.0103 0.1417 0.171 0.0144 0.0352 7.65 
C71-4b 0.777 0.027 0.0100 0.1438 0.169 0.0144 0.0354 7.64 
C71-5a 0,790 0,023 0.0104 0.1418 0.171 0.0149 0.0351 7.70 
C71-5b 0.784 0,031 0.0106 0.1423 0.173 0.0177 0.0363 7.74 
C71-6a 0.800 0,028 0.0100 0.1440 0.172 0.0150 0.0360 7.81 
C71-6b 0.778 0,041" 0.0112 0.1419 0.175 0.0182 0.0365 7.70 
C71-7a 0.793 0.024 0.0101 0.1427 0.171 0.0147 0.0355 7.73 
C71-7b 0.794 0,027 0.0105 0.1435 0.172 0.0148 0.0352 7.80 
C71-8a 0.809 0,025 0.0103 0.1468 0.176 0.0151 0.0364 7.90 
C71-8b 0.772 0,313" 0.0117 0.1410 0.172 0.0147 0.0358 7.57 
C71-9a 0.788 0.025 0.0105 0.1429 0.170 0.0146 0.0357 7.76 
C71-9b 0.753 0,026 0.0102 0.1428 0,167 0.0147 0.0360 7.53 
C71-10a 0.796 0,031 0.0100 0.1423 0.172 0.0172 0.0366 7.66 
C71-10b 0.780 0,030 0.0109 0.1430 0.173 0.0162 0.0368 7.75 

Mean 0.786 0.027 0.0104 0.1433 0,172 0.0153 0.0359 7.70 
S.D. h 0.013 0.002 0.0004 0.0014 0.002 0,0011 0.000S 0.09 
R.S.D," 1.7 8.9 3.8 1.0 1.3 7.2 1.4 1.2 

"Rejected as an outlier by the 
hStandard deviation. 
'Relative standard deviation. 

method of Dixon [12]. 

Discussion of Results 

The results of analysis of the glass samples in this study can be expressed as a matr ix  
consisting of 9 columns,  1 for each of the 9 elements  de termined and 184 rows, 1 for each 
sample. Two immedia te  problems facing the examiner  of such a mult idimensional  da ta  set 
are the recognition of pat terns  within it and  visual presentat ion of these results. We used a 
statistical software package (SYSTAT, ver 3.0) operat ing on a desktop personal computer  to 
evaluate several approaches  to solve these problems. The following discussion details some of 
the conclusions tha t  were drawn from the evaluation of this data.  The a t t ract ion of an inter- 
active statistical approach operat ing on a personal computer  is the flexibility it affords the 
examiner  of data  in observing pat terns  and making conclusions based on valid statistical 
comparisons.  However, in evidentiary situations, pa t tern  recognition procedures should only 
be used to assist the examiner  in observing and  displaying pa t te rns  in the data  ra ther  than  as 
a direct statistical test of the significance of a hypothesis of equality of two samples.  The two 
procedures  repor ted  in this  study, cluster  analysis and  pr incipal  componen ts  analysis,  
should be considered as data  analysis and  display methods.  Classification or discr iminat ion 
protocols result ing from the  applicat ion of these procedures can be evaluated only th rough  
the use of b l ind tests. Once a procedure has been shown to produce accurate classification 
results consistently in bl ind trials, then a high degree of confidence can be placed in the 
classification of unknown source samples using this procedure.  
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Data Presentation 

The first step in data analysis is the determination of which elements are useful classifiers 
of sheet and container glasses. Histograms displaying the concentration distributions of the 
nine elements in sheet and container glasses are shown in Fig. 1. Elements with good classi- 
fying power can be identified in Fig. 1 as those which separate container and sheet glass 
samples into unique compositional groups. It is evident from the distributions that no single 
element affords complete separation of the two classes of glass. However, low concentrations 
of Mg or high concentrations of Ba or Sr uniquely characterize many of the container glasses 
as distinct from the sheets and the remaining few containers. High concentrations of Fe, or 
to a lesser extent Mn or low concentrations of AI, characterize some of the sheet glasses. The 
concentrations of Ca, Na, and Ti indicate no ranges that uniquely characterize either of the 
two classes of glass. One disadvantage of histogram representations of data is that multiple 
element comparisons of individual samples cannot be made. For example, of the 38 con- 
tainer glass samples containing high concentrations of Ba, 13 also contain high concentra- 
tions of Sr. There are 9 additional container glasses which contain high concentrations of Sr, 
but not of Ba. More sophisticated approaches than histograms are required to display multi- 
dimensional relationships of this type. 

The element concentration data can be further evaluated by the comparison of the sample 
statistics for each element in the two classes of glass. A common method of comparing the 
means of two sample populations is by the use of Student's t-test. Use of the t-test in its 
simplest form requires measured values for random samples of both populations to exhibit a 
normal distribution about the population mean with equal variances, assumptions which 
clearly are not met for several of the elements shown in Fig. I. The lack of normal distribu- 
tions can be ignored since it is relatively unimportant in applying the t-test [13]. Equality of 
variances can be evaluated by the F test [I3]. Results of F test calculations indicate, for our 
data, that only Na and Ti have equal variances in container and sheet samples, and all other 
elements have variances which are significantly different between the two classes of glass. 
We have selected the option of ignoring the violations of equality of variance assumption and 
have calculated t-values for our data rather than using more complicated testing procedures 
not requiring equality of variances. The t-values thus calculated can be used as a relative 
indication of the classifying power of the individual elements. The mean concentrations, 
standard deviations, and t-values for each element in the two classes of glass are given in 
Table 5. The t-values decrease in the order Mg > AI > Ca > Fe > Mn > Ba > Sr > Ti > 
Na. The low values of t for Ti and Na indicate that there is no significant difference between 
the mean concentrations of these elements in sheet and container glasses. Hence, their inclu- 
sion in the data set offers no additional classifying power over the data set with their omis- 
sion. The t-values for the remaining seven elements are all high, indicating that there is a 
significant difference between the mean element concentrations between the two classes. 
The relative values of t agree well with the observations made from the histograms shown in 
Fig. l, although differences in the order of t-values and our observations of the classifying 
power of the elements from the histograms occur in several instances. The t-value for Ca is 
quite high even though no unique ranges of concentrations exist for either class of glass. This 
reflects the good approximation to a normal distribution for both sheet and container Ca 
concentrations and the fact that the mean Ca concentration of 6.64 % for containers is signif- 
icantly higher than the 4.71% for sheets. In comparison, the Ba histogram uniquely classi- 
fies 38 of the 135 container glass samples by having values greater than 0.1%, and the mean 
Ba concentration for container glass is about 5 times the concentration in sheet glass, yet the 
t-value for Ba is lower than that for Ca. This results because the distribution of container Ba 
concentrations is skewed, resulting in a large relative standard deviation. Using both the 
t-values and direct visual observation of the histograms, we conclude that the elements AI, 
Ba, Ca, Fe, Mg, Mn, and Sr provide good classification power and will be used to build a 



56 JOURNAL OF FORENSIC SCIENCES 

78 42 

MAGNESIUM (%) 

N N i o ~  
0 

ALUMINUM (%) 

g4 

co 2O 
Z 
0 

r~- 
LIJ 

rn 
CD 

10 
o 

c5 
Z 

I CONTAINERS 

~]SHEETS 

l i 
% 

M, f] n 

I RON (7.) 

~ D n  

FIG. 1--Element concentrations in glasses. 
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TABLE S--Sample statistics for sheet and container glass compositions. Mean and standard 
deviation results are expressed as percent by weight of element in glass. 
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Variable Fe Ca Mn AI Mg Sr Ti Ba Na 

Container mean 0.034 6.64 0.0062 0.82 0.32 0.03 0.024 0.088 10.6 
Container S.D. 0.017 0.95 0.0049 0.11 0.49 0.045 0.015 0.145 1.3 

Sheet mean 0.107 4.72 0.003 0.49 1.82 0.0046 0.021 0.0017 10.5 
Sheet S.D. 0.104 1.82 0.0024 0.29 0.53 0.0033 0.025 0.0039 2.1 

Overall mean 0.054 6.13 0.0054 0.73 0.72 0.023 0.023 0.065 10.6 
Overall S.D. 0.064 1.50 0.0046 0.23 0.83 0.040 0.018 0.130 1.6 
Pooled class S.D. 0.055 1.24 0.0044 0.18 0.5 0.038 0.018 0.124 1.7 
t-statistic 7.890 9.33 4.35 11.12 17 .88  3.92 1.06 4.16 0.3 

classification system. This result agrees well with the MPFSL procedure which is based on 
ICP-AES determination of AI, Ba, Fe, Mg, Mn, and St. The concentrations of Fe, AI, Mg, 
Mn, and Ba in each class of glass in our study are similar to those reported by Hickman (for 
example, compare our Fig. I with Fig. 7 of Ref 4), but the ranges of concentrations are wider 
in our study, particularly for Ba. This reflects the wider range of glass sources available in 
the United States than in Great Britain. Comparison of our data with the British data indi- 
cates that the compositions of our glass samples commonly fall outside the limits of their 
class ranges in the MPFSL classification system. Although it is not useful for classification, 
Ti is a good element to use for discrimination of similar sources, since its concentration 
range is more than 100 times greater than its analytical uncertainty shown in Table 4. 

Nonstatistical Approach  to Classification 

A simple, nonstatistical approach to classification of the glass samples used in this study 
can be derived by the application of a series of decisions to the data using those elements 
offering strong classification power. Using this approach, we observe Fig. 1 and select ranges 
of an element which uniquely define one product-use class and delete those samples from the 
data set. For example, from the histogram for Mg, we can see that if the Mg content of an 
unknown glass fragment is less than 0.5%, then there is a high degree of probability that the 
glass fragment came from a container. By deletion of the samples meeting this criterion, we 
produce a smaller data set. The process of selection of classifying criteria can be successively 
repeated for the remaining samples and elements until all samples are correctly classified. 
For this approach to be most effective, no samples should have element concentrations close 
to the cutoff values used in placing samples into classes. 

One possible classification procedure based on such a sequence of decisions is shown in 
Fig. 2. In this procedure, high concentrations of Ba and Sr and low concentrations of Mg are 
used to classify container glasses with a relatively high degree of certainty. Concentrations of 
Fe, Mn, and AI characterize the sheet and remaining container glass samples with progres- 
sively decreasing degrees of certainty. This procedure is attractive for courtroom presenta- 
tion because it is not based upon statistical considerations and can be applied to an unknown 
sample without any computation. It also gives some degree of confidence to the placement of 
a sample into its resulting class. Disadvantages of this classification procedure are that it 
does not provide any quantitative information about the interrelationships between samples 
within a class or between classes and that the predictive value for those samples near the 
bottom of Fig. 2 is not very good. In fact, a more conservative classification would replace 
the last decision with "Is the concentration of Fe > 0.05?" with positive answers (13) being 
classified as sheets and negative answers (4) being classified as "unclassifiable." This classi- 
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FIG. 2--Flow chart for nonstatistieal decision approach to classification of a glassJ?agment into sheet 
and container classes. 

fication procedure also uses only six elements, and several of those to define only one class; 
thus it may not be the best means of using the data to perform the classification. 

For comparison, we applied Ryland's approach based on selected ratios between Mg, Ca, 
and Fe [6] to the 184 samples in our data base after adjusting his selection criteria to reflect 
differences in concentration and X-ray fluorescence peak intensities. Ryland's procedure 
correctly identifies 128 of the 135 containers and 25 of the 49 sheets with the remaining 7 
container and 24 sheet glasses classified as "unclassifiable." From this limited comparison, 
it appears that the use of 6 elements rather than 3 increases the probability of correctly 
classifying glass fragments, particularly for sheet glass samples. 

Principal Components  Analysis 

The pattern recognition procedures used in our study are designed to provide insight into 
the classification of glass, that is, to determine the natural clustering of data points in the 
nine-dimensional space of our analytical results. "Cluster analysis" is the name given to 
several methods by which data points lying close together can be grouped and distances 
between clusters of points can he determined. 
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Before discussion of clustering methods, however, we will discuss reducing the dimension- 
aiity of the data set by principal components analysis (or eigenanalysis). If we represent each 
sample in our study as a vector in the multidimensional space comprising the measured 
variables or features, then the goal of principal component analysis is to reduce the variables 
to a number where patterns can be seen in conventional plots (ideally two or three features) 
while retaining as much variance of the data as possible. In this context, principal compo- 
nent analysis can be considered a display method in which data points are projected onto 
new sets of axes formed by linear combinations of the variables (or features) in the original 
data set. This approach is similar to factor analysis, which relies upon using a known set of 
samples to form a combination of factors such that the original separation of true clusters of 
samples is retained in the minimum number of factors. In chemical systems, the minimum 
number of factors that retain the separation of different clusters of samples represents the 
number of chemical processes that control the distribution of measured features in the train- 
ing set. Principal components and factor analysis methods are well developed in many appli- 
cations, particularly in the geology, chemistry, and social science disciplines, and the inter- 
ested reader should refer to the literature for more information about the derivation and use 
of these methods [14.15]. 

We have used unsupervised principal components analysis to reduce our data to two com- 
ponents to see whether containers and sheets form compositionally distinct natural group- 
ings. This principal components analysis algorithm uses the Pearson Product-Moment cor- 
relation coefficients between all combinations of the measured variables as a starting point 
for combining features to reduce the number of components. This approach reveals the nat- 
ural variations of the composition data, as distinct from a learning set approach, such as 
used by Hickman [2], where separation of the two classes is made based upon a training 
algorithm derived from known source glass measurements. A plot of the first 2 principal 
components for the concentrations of AI, Ba, Ca, Fe. Mg, Mn and Sr (Na and Ti have been 
omitted because of their lack of classifying power) in the 184 container and sheet glasses is 
shown in Fig. 3. The solid line indicated in Fig. 3 separates the container and sheet glass 
composition domains. The separation is complete except for 2 container glass samples (both 
from the same manufacturing plant) and 2 sheet glass samples which are classified incor- 
rectly. Component 1 is a linear combination of the variables, dominated by AI, Ca, Fe, and 
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Mg, and Component 2 is composed predominantly of Sr and Ba. The loadings have been 
rotated to maximize variable contributions to either component (VARIMAX rotation). 
About 51% of the original variability of the data is retained in the first 2 components. Al- 
though inclusion of more components would retain more of the original sample variability. 2 
were selected for ease of plotting and inclusion of a third component does not improve classi- 
fication of the 4 incorrectly placed samples. The good separation of classes using only 2 
components is an interesting observation. One explanation for this is that contamination in 
the sand, lime, and alumina used in the glass manufacture is the major factor controlling 
elements like Ba, Sr, Mn, and Fe (Component 1) and manufacturing processes control ele- 
ments such as AI, Mg, Ca, and to some extent Fe (Component 2). 

Cluster Analysis 

Another approach for classification and also discrimination among glass sources is the use 
of cluster analysis. There are many excellent summaries of the use of clustering for glass 
analysis [1-3] and general applications [161, so we will limit discussion to the procedures 
used in our study. The goal of cluster analysis of multivariate data is to arrange all of the 
samples in multidimensional space and group those samples together that have short intra- 
group distances compared to intergroup distances. Cluster analysis is analogous to biologi- 
cal classification systems based on grouping samples together that display common features. 
The use of a distance measure and quantitative feature descriptions for classification of sam- 
ples places several requirements on the data. 

First, scaling is required so that different weights are not given to elements occurring at 
widely different concentrations in the samples. For example, if we used our unscaied data, 
where all concentrations are expressed as weight percent, the differences in Ca concentra- 
tions that are in the percent range would dominate over the differences in Ba that are in the 
0.001% range. The most common forms of data scaling for clustering are logarithmic and 
Z-score transformations. A logarithmic transform, as used in the British glass studies [I-4], 
replaces each element concentration by the logarithm of its value. The disadvantage of this 
approach is that it overemphasizes the differences in small concentration values, which may 
have large relative analytical uncertainties. The Z-score transformation replaces each analyt- 
ical value with the difference between that value and the mean divided by the standard devia- 
tion of all values for that element. Disadvantages of Z-score scaling are the requirements of a 
normal distribution of data and the fact that the variable scores must be changed every time 
an additional sample is added to the data set. To avoid the drawbacks of these methods, we 
used range scaling in which each measured element concentration is replaced by a scaled 
value according to the formula 

Scaled element value = 
measured value -- lowest value 

highest value -- lowest value 

For each element, the highest and lowest values are those weight percents obtained for the 
entire data set. Thus, each element concentration is transformed in the scaled data set to the 
fraction of its distance between the lowest and highest value of tffat element concentration (a 
value between 0 and 1). This approach offers the advantages of placing all variables on scales 
of nearly identical weight and retaining low levels of significance for concentrations close to 
the detection limit and for small differences between samples. For this application, we used 
the measured range for each element for scaling. For wider application, as in building an 
archived data base, ranges of expected values can be used so that addition of a new sample 
having a concentration outside of the previously determined range will not cause a change of 
all prior scaled results. We have found the method of range scaling to be very useful, not only 
for glass analysis, but for compositional comparisons of several types of evidence, where 
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clustering is to be used to display the similarities and relationships among a group of up to 
several hundred samples. In most evidentiary situations, we recommend using range scaling 
based on the range of results for those samples only. This approach generally provides the 
greatest discrimination within the comparison set of samples. 

The second restriction on the data is the requirement of independence of variables if a 
Euclidean distance measure is to be used for clustering. The Pearson Product-Moment cor- 
relation coefficients for all combinations of the 9 elements in the 184 samples are shown in 
Table 6. It is generally accepted that variables can be considered independent for clustering 
purposes if the correlation coefficient is less than 0.5. For the combined sheet and container 
glass data set, all element pairs are correlated at a level significantly below this value except 
for Mg and Ca which are near it. This inverse relationship, which we will consider insignifi- 
cant for purposes of clustering, is to be expected from consideration of glass manufacturing 
methods. Magnesium is the only element in our study which manufacturers intentionally 
maintain at a different concentration in sheet and container glass. Magnesium is added to a 
level of about 2% in most sheet glass to prevent devitrification and improve its flow proper- 
ties. For glasses having Mg contents below 0.5%, none has intentionally been added by the 
manufacturer. Magnesium occurs in these glasses adventitiously from its presence in the 
lime or cull glass used as raw materials in glass making. The slight negative correlation 
between Mg and Ca concentrations arises in part because manufacturers of container glass 
attempt to keep the sum of MgO plus CaO constant at about 7% by weight. The addition of 
Mg to sheet glasses lessens the inverse correlation between the two elements when sheet and 
container glasses are mixed in a single data base. As the dolomite content of lime increases, 
the Mg increases and Ca decreases in an approximately proportional manner, further con- 
tributing to the observed negative correlation. The consequence of the lack of linear correla- 
tions between variables in our data set is that Euclidean distance measures can be used in 
clustering. 

The unsupervised hierarchical clustering algorithm we used begins by finding the pair of 
data points connected by the shortest Euclidean distance in the multidimensional space. 
These points are replaced by a single point at their mean location and the process repeated. 
Results are printed out in a dendrogram or "tree diagram" in which the lengths of branches 
connecting samples reflect the distance between them and their relationship to other sam- 
ples. The cluster diagram for 20 sheet and 20 container glass samples randomly selected 
from our data set is shown in Fig. 4. The scaled values of AI, Ba, Ca, Fe, Mg, Mn, and Sr 
were used to construct this dendrogram. For classification purposes, we would like to be able 
to cut the tree at the point where there are only 2 branches and have the 2 resulting groups be 

TABLE 6--Pearson Product-Moment correlation coefficients Jbr 184 sheet and container glasses. 

Ba 

Ca 

Fe 

Mg 

Mn 

Sr 

Ti 

0.163 

0.407 O. 113 

--0.361 --0.120 --0.263 

--0.493 --0.292 --0.533 0.370 

0.260 --0.002 0.122 --0.119 --0.128 

0.220 0.317 0.214 --0.168 --0.288 0.196 

O. 163 --0.001 0.129 0.316 --0.141 0.284 0.359 
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FIG. 4--Dendrogram of 40 container and sheet glass samples using AI, Ba, Fe, Mg, Mn, Sr. and Ti 
for classification. 

containers and sheets. However, as shown in Fig. 4, grouping to the level of two clusters does 
not produce good classification characteristics. Instead, containers from some manufactur- 
ing plants are more like some sheets than they are like containers from a different source. 
Discrimination between samples as made by a one-to-one comparison of element concentra- 
tions indicates that samples separated by a clustering distance of about 0.1 units are signifi- 
cantly different. Cutting the branches in Fig. 4 at this distance results in formation of about 
14 discriminated clusters within these 40 glasses. Similar results occur when other glasses in 
the data set are selected for clustering. We noted during attempts to cluster a wide variety of 
glasses that samples made in the same manufacturing plant tend to cluster together. Thus, 
clustering offers an effective means to answer questions of discrimination or differentiation 
among glass sources within the same class. An example follows illustrating the use of cluster 
analysis for a data set typical of those which might be encountered in evidentiary situations. 

The dendrogram resulting from unsupervised hierarchical clustering of the 46 food con- 
tainer samples in our study using all elements except Na and Ca is shown in Fig. 5. Each 
sample is identified by the glass manufacturer and location of the production facility where it 
is known. In all cases, short branch lengths connect jars from within each manufacturing 
plant. Cutting the branches at a length of about 0.025 distance units divides the data into 
clusters with complete discrimination of each of the manufacturing plants, with the excep- 
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FIG. S--Dendrogram of 46 Jbod container samples using AI, Ba, Fe, Mg. Mn, Sr. and Ti. Samples 
are ident(fied by mamtfaeturer and plant location. 

tion of the Brockway Glass Company plants in Virginia and Pennsylvania. The interrelation- 
ships between different sources of glass jars are indicated by the lengths and ordering of 
branches connecting different manufacturing plants. In several instances, two plants of dif- 
ferent companies are more similar to each other than they are to other plants of the same 
company. Some of the differences in the glass appear to relate to geographical location, an 
observation that supports the hypothesis that some of the measured element concentrations 
derive from the local sources of raw materials used in glass manufacture. Also note that the 
glass samples for the Owens-Illinois plants in Clarion, Pennsylvania, and Charlotte, Michi- 
gan, were produced over a 3-year period. Considering this, the clustering of these samples 
together is remarkably good. 

Conclusions 

Accurate concentration measurements are essential for the use of classification proce- 
dures, since the placement of an unknown sample into a class is based on comparison with 
previously defined parameters. Discrimination between glasses from different sources hay- 
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ing similar refractive indices requires precise analysis to differentiate between the similar 
compositions. The procedure using ICP-AES for analysis offers the precision and accuracy 
necessary for such comparisons for glass fragments larger than about 500/~g. Other proce- 
dures such as electron beam-induced X-ray analysis or spark source emission spectrometry 
allow use of smaller samples, but generally do not provide the necessary accuracy and 
precision. 

Pattern recognition techniques are useful for determining sample groupings that are diffi- 
cult to recognize when considering multidimensional data sets and can provide effective vis- 
ual display of complex compositional relationships. Principal components analysis provides 
a means of displaying the natural separation of sheet and container glasses into two groups 
with little overlap. Extension of this approach to previously unclassified samples provides a 
means of classification into the two groups. Cluster analysis is an effective means of display- 
ing similarity of composition of glass fragments and discrimination among sources. It is 
particularly useful when several sources of glass are present in a collection to be evaluated 
together. 

In an evidentiary situation, where known and questioned source fragments are found to be 
indistinguishable in their physical and optical properties, classification by compositional 
analysis can be used to exclude alternate sources. Additionally, from the data gathered in 
this study, there is an indication that when the composition of known and questioned glass 
fragments are found to be indistinguishable, greater assurance can be placed in the correct- 
ness of a common source conclusion than when optical and physical parameters are used 
alone. Alternatively, it has been reported and we have also observed that instances occur 
where glass fragments from different sources have indistinguishable refractive indices but 
readily distinguishable compositions. Thus, in comparing known and questioned sources of 
glass fragments, the significance of a "common source" conclusion appears to be improved 
when composition is considered in addition to optical and physical parameters. 

A general procedure to be followed for handling casework situations where two glass sam- 
ples are to be eompared to see if a common source is indicated is to look for a one-to-one 
comparison of each element after finding indistinguishable physical and optical parameters. 
Pattern recognition procedures may help display relationships among several sources of 
glass, but will not, in general, provide the criteria for considering two samples to be a compo- 
sitional "match." As indicated in other studies on this subject, our classification system has 
not yet reached a point of optimum classification of all classes of glass and it would be help- 
ful to acquire more data on additional elements. The ICP-AES method is particularly advan- 
tageous in this regard, because additional elements could be determined with only the inclu- 
sion of more standard solutions. To answer questions of discrimination of similar sources, 
more information is needed concerning the homogeneity of glass objects submitted as evi- 
dence. From preliminary data, it appears that compositional analysis offers additional dis- 
crimination capability over physical and optical characterization of glass fragments. Addi- 
tional data can and are, in fact, being acquired in several laboratories in the United States 
and Great Britain concerning the variation in composition of evidential glasses. Compilation 
of these data will provide useful information eoncerning the reliability of compositional anal- 
ysis for the discrimination of glass sources. 
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